
Katinka	  Bellomo1

Collaborators:	  
Amy	  Clement2,	  Joel	  Norris3,	  Brian	  Soden2

1Lamont-‐Doherty	  Earth	  Observatory	  of	  Columbia	  University
2Rosenstiel	  School	  of	  Marine	  and	  Atmospheric	  Science,	  University	  of	  Miami
3Scripps	  Institution	  of	  Oceanogrphy,	  University	  of	  California,	  San	  Diego

Observational	  and	  Model	  Estimates	  of	  Cloud	  
Amount	  Feedback	  over	  the	  Indian	  and	  

Pacific	  Oceans



Background

• Cloud	  Feedback	  is	  the	  largest	  uncertainty	  in	  estimates	  of	  
climate	  sensitivity

[13] In contrast to high clouds, the low cloud feedback
(Figure 2, bottom left) is positive over low to middle latitude
ocean and land areas, consistent with a reduction in cloud
amount (Figure 2, bottom right) and liquid water path
(Figure 2, top right) in these regions. The changes in cloud
cover are predominantly negative and likely tied to the
widespread reduction in free‐tropospheric relative humidity
in these models. In response to increased CO2, the marine
subtropical regions in these models generally exhibit
increased mid‐tropospheric subsidence [e.g., Lu et al., 2007;
Vecchi and Soden, 2007a] and an associated decrease in
lower tropospheric relative humidity [e.g., Vecchi and Soden,
2007b]. It is worth noting, however, that most GCMs
underestimate both the low cloud amount [Zhang et al., 2005]
and their sensitivity to interannual SST changes [Bony and
Dufresne, 2005].
[14] Low clouds are also responsible for the regions of

negative net cloud feedback over the high latitude southern
and northern Atlantic oceans. The regions of negative low
cloud feedback are associated with substantial increases in the
cloud liquid water path, but little change in cloud amount;
implying that it is the brightening of existing clouds which is
primarily responsible for the negative feedback. These are
associated with the poleward shift of storm tracks which
results in the location of a positive feedback on their equa-
torial flank.

3.2. Intermodel Differences
[15] To investigate the contribution of LW and SW cloud

feedbacks to the intermodel differences in net cloud feedback,
Figure 3 (top) plots the global, annual‐mean SW and LW
cloud feedback against the net cloud feedback for each of the
12 models. The global‐mean net cloud feedback ranges from
∼0.25 W/m2/K to ∼1.5 W/m2/K. All models show a positive
global‐mean LW cloud feedback (red), with the majority of
models clustering near 0.5 W/m2/K. However, there exists
little relation between a model’s LW and net cloud feedback,
although a slight tendency for larger LW feedbacks to be
associated with smaller net feedbacks is evident. In contrast,

the SW cloud feedback (blue) exhibits a noticeably larger
range (−0.5 to 1.25 W/m2/K) and has a much higher corre-
lation with changes in net cloud feedback (r = 0.94).
[16] Figure 3 (bottom) plots the global‐mean high, mixed

and low cloud feedback versus the corresponding total cloud
feedback for each model. Since the sum of the high, mixed,
and low cloud feedback add up to the total feedback, the slope
of the regression line (listed in parentheses) provides a mea-
sure of the contribution of each cloud type to the intermodel
range of the total feedback. The intermodel spread in the net
cloud feedback is largely attributable to discrepancies in their
projected feedback from low clouds, which contribute
roughly 75% of the intermodel spread. Differences in high
cloud feedback are responsible for only about 7% of the
spread in total cloud feedback, and the feedback from mixed
clouds contributes the remaining 18%.
[17] To further assess which cloud types are responsible for

the intermodel differences in net cloud feedback, we regress
the local change in cloud feedback for each model against the
corresponding global mean net cloud feedback for that
model. The regressions are computed across model space
using annual mean values for all 12 models. A map of the
regression slope (Figure 4) highlights those areas for which
the intermodel spread in global mean net cloud feedback is
most strongly associated with the changes in cloud cover
in that region. The regression values are negative in these
regions, indicating that models with increased (decreased)
marine low clouds tend to have anomalously small (large)
values of global‐mean net cloud feedback. That is, the strong
positive cloud feedback in high sensitivity models is pri-
marily attributable to their simulated reduction in low‐level
marine clouds. Overlain are contours of the ensemble‐mean
500 hPa pressure velocity. The largest regional contributions
to the intermodel spread in cloud feedback occur over areas of
large‐scale subsidence typically associated with subtropical
marine low clouds, including both stratocumulus and trade
cumulus regimes. While local maxima tend to coincide with
traditional stratocumulus regions in the eastern ocean basins,
the contributions from trade cumulus regions further to the

Figure 4. The intermodel regression of the global mean cloud feedback against the local cloud feedback for the 12 models
used (see Table S1). Larger values of the highlight those areas which contribute the most to the intermodel spread in global
mean net cloud feedback. The multi‐model ensemble‐mean 500 hPa pressure velocity from the first 20 years of the model
integrations are shown in contours.
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The multimodel-mean net cloud feedback is
positive (0.43 W m−2 K−1), suggesting that on aver-
age, clouds cause additional warming. However,
models produce a wide range of values, from weakly
negative to strongly positive (−0.13 to 1.24 W m−2

K−1). Despite this considerable intermodel spread,
only two models, GISS-E2-H and GISS-E2-R, pro-
duce a (weakly) negative global-mean cloud feed-
back. In the multimodel mean, this positive cloud
feedback is entirely attributable to the LW effect of
clouds (0.42 W m−2 K−1), while the mean SW cloud
feedback is essentially zero (0.02 W m−2 K−1).

Of all the climate feedback processes, cloud
feedback exhibits the largest amount of intermodel
spread, originating primarily from the SW
effect.3,6,26,32 The important contribution of clouds
to the spread in total feedback parameter and ECS
stands out in Figure 1. The net cloud feedback is
strongly correlated with the total feedback parameter
(r = 0.80) and ECS (r = 0.73).

Rapid Adjustments
The cloud-radiative changes that accompany CO2-
induced global warming partly result from a rapid
adjustment of clouds to CO2 forcing and land-
surface warming.38,39 Because it is unrelated to the
global-mean surface temperature increase, this rapid
adjustment is treated as a forcing rather than a feed-
back in the current feedback analysis framework.40

An important implication is that clouds cause uncer-
tainty in both forcing and feedback. For a quadru-
pling of CO2 concentration, the estimated global-

mean radiative adjustment due to clouds ranges
between 0.3 and 1.1 W m−2, depending on the analy-
sis method and GCM set, and has been ascribed
mainly to SW effects.6,41,42 Accounting for this
adjustment reduces the net and SW component of the
cloud feedback. We refer the reader to Andrews
et al.43 and Kamae et al.44 for a thorough discussion
of rapid cloud adjustments in GCMs. Hereafter, we
focus solely on changes in cloud properties that are
mediated by increases in global-mean temperature.

Decomposition By Cloud Type
For models providing output that simulates measure-
ments taken by satellites, the total cloud feedback
can be decomposed into contributions from three rel-
evant cloud properties: cloud altitude, amount, and
optical depth (plus a small residual).45 The
multimodel-mean net cloud feedback can then be
understood as the sum of positive contributions from
cloud altitude and amount changes, and a negative
contribution from optical depth changes (Figure 2
(a)). The various cloud properties have distinctly dif-
ferent effects on LW and SW radiation. Increasing
cloud altitude explains most of the positive LW feed-
back, with minimal effect on SW. By contrast, cloud
amount and optical depth changes have opposing
effects on SW and LW radiation, with the SW term
dominating. (Note that 11 of the 18 feedback values
in Figure 2 include the positive effect of rapid adjust-
ments, yielding a more positive multimodel-mean SW
feedback compared with Figure 1.)

FIGURE 1 | Strengths of individual global-mean feedbacks and equilibrium climate sensitivity (ECS) for CMIP5 models, derived from coupled
experiments with abrupt quadrupling of CO2 concentration. Model names and feedback values are listed in the Table S1, Supporting information.
Feedback parameter results are from Caldwell et al.,5 with additional cloud feedback values from Vial et al.6 and Zelinka et al.26 ECS values are
taken from Andrews et al.,27 Forster et al.,28 and Flato et al.29 Feedback parameters are calculated as in Soden et al.30 but accounting for rapid
adjustments; the cloud feedback from Zelinka et al. is calculated using cloud-radiative kernels31 (Box 2). Circles are colored according to the total
feedback parameter. The Planck feedback (mean value of −3.15 W m−2 K−1) is excluded from the total feedback parameter shown here.
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• The	  uncertainty	  is	  largest	  for	  low-‐level	  clouds	  and	  for	  SW	  
cloud	  feedback	  (cloud	  amount)

• Lack	  of	  long-‐term observational	  constraints	  on	  the	  sign	  
and	  magnitude	  of	  cloud	  feedback



Cloud	  Observations

Ship	  observations

EECRA,	  derived	  from	  ICOADS*	  
1954-‐2008	  

*Hahn	  and	  Warren	  2009,	  Eastman	  et	  al.	  2011

Pros:	  Long-‐term	  (55	  years),	  better	  
at	  observing	  low/total	  cloud	  cover

Cons:	  Sparse,	  subjective,	  only	  
cloud	  amount	  and	  cloud	  type

Satellites

ISCCP	  and	  PATMOS-‐X	  (AVHRR)*
1984-‐2009

*corrected,	  Norris	  and	  Evan	  2015

Pros:	  Objective,	  known	  biases,	  
information	  on	  vertical	  properties

Cons:	  Short-‐term	  (30	  years),	  
problems	  at	  identifying	  low	  clouds



Total	  Cloud	  Amount	  change	  
1954-‐2005

of climate change, and negative values indicate nega-
tive cloud amount feedback, which means a reduction
of climate change. We note that since we do not con-
sider vertical changes in cloud cover and cloud prop-
erties, our computation of cloud amount feedback is
not the same as cloud feedback, which can be written
as the sum of cloud amount, cloud altitude, cloud
optical feedbacks, and a residual term (Zelinka et al.
2012b).
We estimate cloud amount feedback in models as

in observations using Eq. (5). We compute model es-
timates for the first ensemble member (r1i1p1) of the
42 models considered, and then obtain the multimodel
mean by averaging all estimates. Averaging across
multiple models ensures better separation of long-term
forced climate trends from internal climate variability.
Since we subtracted tropical mean cloud amount from
cloud fields, both model and observational estimates
of cloud amount feedback are relative to the tropical
mean. Hence, positive local feedback means more posi-
tive than the tropical mean, and negative local feedback
more negative than the tropical mean. We note that the
tropical multimodel mean cloud change is 20.25%;
therefore, the absolute and relative estimates of local
cloud amount feedback in the multimodel mean are not
much different from one another and exhibit the same
sign. We cannot evaluate the difference between ab-
solute and relative estimates of local cloud amount
feedback in observations because of the observational
biases discussed above.

4. Results

a. Cloud amount change

Figure 1 shows total cloud amount changes from 1954
to 2005 in (a) observations (EECRA) and (b) the CMIP5
multimodel mean. Contours represent cloud climatology,
while stippling indicates where the change is robust. For
observations, the change is considered robust where it is
significant at the 90% level of a two-tailed Student’s t test.
The degrees of freedom in each grid box correspond to the
number of observations, and are adjusted to take into ac-
count autocorrelation at lag 1 where the autocorrelation is
significant at the 90% level of a Pearson’s R test. For
models, stippling indicates where at least 31 out of 42
(;74%)models agree on the sign of cloud change. Figure 1
shows that the tropical pattern of the multimodel mean
cloud amount change shares many large-scale features
with observations, although changes are smaller (note the
different color scales). Observations (Fig. 1a) display ro-
bust cloud changes in the four regions contoured by black
boxes: cloud cover is found to decrease over the northeast
Pacific and equatorial western Pacific, and to increase over
the southern central Pacific and western Indian Ocean.
Over these regions, the multimodel mean exhibits cloud
changes of the same sign as observations but smaller in
magnitude (Fig. 1b). In addition, models simulate robust
cloud increase over the subtropical southeast Pacific (58–
208S, 808–1208W), which is the only region where there is
good intermodel agreement. While there are not enough
observations in EECRA to constrain cloud cover changes

FIG. 1. Total cloud amount change (1954–2005): (a) EECRA and (b) CMIP5 multimodel
mean. Contours represent cloud amount climatology (long-term mean), while stippling in-
dicates where the changes are robust. In (a) changes are considered robust if they pass a two
tailed Student’s t test at the 90% level where the degrees of freedom for the test correspond to
the number of observations in each grid box, and are adjusted to take into account autocor-
relation at lag1 where the autocorrelation is significant at the 90% level of a Pearson’s R test. In
(b) stippling indicates where at least 31 models out of 42 (74%) agree on sign. The boxed
regions highlight where observed cloud changes are robust.
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Computed	  as	  linear	  trend	  multiplied	  by	  #	  of	  years	  (52	  years)

CMIP5	  historical	  
multi-‐model	  mean
(42	  models	  run	  with	  
prescribed	  time	  varying	  
historical	  forcings)

EECRA	  (ship)	  
observations

• 4	  regions	  where	  the	  obs trend	  is	  statistically	  significant
• Overall	  pattern	  similar	  to	  the	  multi-‐model	  (forced)	  mean



Comparing	  with	  Satellite	  Obs

over this region, the multimodel mean is consistent with
observed positive cloud trends from 1900 to present in the
southeast Pacific found in the ICOADS observations by
Deser et al. (2010).
To corroborate these long-term cloud changes, we

compare cloud anomalies in EECRA with ISCCP and
PATMOS-X. Figure 2 shows interannual cloud cover
anomalies in the four boxed regions of Fig. 1 where
cloud changes in EECRA are statistically significant.
EECRA anomalies are plotted in blue, ISCCP in red,
and PATMOS-X in green. Dashed blue lines represent
the linear trend fit toEECRAanomalies. Cloud anomalies
in EECRA show less interannual variance than satellite
observations; however, interannual fluctuations and trends
are consistent in the three datasets in the overlapping years
of coverage (1984–2007). For example, interannual peaks
during ENSO events in the western and central Pacific
boxes are evident in all three datasets, and decadal fluc-
tuations in cloud cover over the northeast Pacific due to

shifts in the Pacific decadal oscillation (Deser et al. 2004)
are also captured by all datasets. In Table 2 we compute
correlation coefficients between the time series shown in
Fig. 2. All correlations are significant at the 95% level of
a two-tailed Pearson’s R test with the exception of the
western Indian box where surface observations do not
show statically significant correlation with satellites. We
note that there is less agreement also between the two
satellites in this region.
As discussed above, EECRAobservations suffer from

global spurious variability, which makes the interpre-
tation of long-term trends problematic. However, con-
sistency with satellite datasets where cloud changes are
statistically significant (Fig. 2) gives increased confi-
dence in the credibility of cloud changes in EECRA.
The western Indian Ocean is a region where there is less
agreement with satellites, and this needs to be taken into
account in the interpretation of long-term cloud changes.
We note, however, that models simulate consistent sign

FIG. 2. Regional time series of total cloud amount interannual anomalies in the four boxed regions of Fig. 1. Blue
refers to EECRA (1954–2008), red to ISCCP (1984–2007), and green to PATMOS-X (1984–2007). The blue dashed
line is the linear trend fitted to EECRA.

TABLE 2. Linear correlation coefficient between the time series shown in Fig. 2. Bolded values indicate where correlations are significant
at the 95% level of a Pearson’s R test.

Correlation coefficient EECRA-ISCCP EECRA-PATMOSX ISCCP-PATMOSX

Western Indian 0.24 0.20 0.64
Western Pacific 0.81 0.78 0.79
Northeast Pacific 0.83 0.77 0.82
Central Pacific 0.75 0.78 0.86
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Blue:	  EECRA	  (ships)
Red:	  ISCCP
Green:	  Patmos-‐X	  (AVHRR)
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Estimate	  of	  
Cloud	  Amount	  Feedback

The first term on theRHS of (2) represents the change in
clear-sky flux. The second term represents the contri-
bution from changes in cloud cover (Dc) with all the
other properties affecting radiation held fixed, while the
third term represents the effect of changes in radiation
fluxes weighted by the mean cloud cover. The last term
(«) accounts for the covariance among the fields.
In previous studies observational estimates of cloud

feedback have often been computed as the change in
cloud radiative effect (CRE) at TOA divided by change
in global mean SST (DTs). The change in CRE at TOA
can be written rearranging Eq. (2) as

DCRE5DRtot 2DRclr 5Dc(Rcld 2Rclr)

1 c(DRcld2DRclr) , (3)

where the covariance term is much smaller than the
other terms and can be omitted (cf. Taylor et al. 2007).
This method has been criticized because the second
term on the RHS of (3) may include changes in clear-sky
fluxes due to noncloud feedbacks (see discussion in Soden
et al. 2008). These changes can cause a change in CRE that
is not caused by a change in cloud cover.
In this study, we use only the first term on the RHS

of (3) to define cloud feedback, so our definition is not
contaminated by changes in clear-sky radiation. When
this term [i.e., Dc(Rcld 2Rclr)] is divided by change in
SST (DTs) it represents cloud feedback.We note that we
cannot evaluate cloud feedback due to changes in cloud
vertical and optical properties because long-term ship-
based observations only provide information about cloud
amount. Therefore,Dc in our study corresponds to changes

in cloud amount and we can only estimate the cloud
amount component of cloud feedback.
SinceCRE is defined asCRE5Rtot 2Rclr, we canwrite

Rcld 2Rclr using (1) as

k5
CRE

c
, (4)

where k represents the sensitivity of Rtot to changes in
cloud amount, and is calculated as mean cloud radiative
effect (CRE5Rtot 2Rclr) at TOA fromCERES divided
by mean cloud amount (c) from EECRA. We will refer
to k as ‘‘cloud amount radiative kernel’’ in the reminder
of this text in analogy to cloud radiative kernels devel-
oped by Zelinka et al. (2012a). In previous studies, k has
been evaluated using a radiative transfer model that
calculates cloud radiative kernels directly (Zelinka et al.
2012a; Zhou et al. 2013) or as a residual from radiative
kernels of all the other noncloud feedback variables
(Soden et al. 2008). Other methods have also been de-
veloped [e.g., the ‘‘approximate partial radiative pertur-
bation method’’ of Taylor et al. (2007)]. Soden et al.
(2008) provide a good overview of these different tech-
niques. In addition to changes in cloud amount, these
methods generally take into account the sensitivity to
perturbations in cloud vertical and optical properties.
Cloud amount feedback (units of Wm22K21) can

then be finally written as

CAF5
kDc
DTs

. (5)

The sign convention is that positive values indicate posi-
tive cloud amount feedback, whichmeans an amplification

TABLE 1. (Continued)

Institution Model name

Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology
(Japan)

Model for Interdisciplinary Research on Climate (MIROC),
Earth System Model (MIROC-ESM)

MIROC, Earth System Model, Chemistry Coupled
(MIROC-ESM-CHEM)

MIROC, version 4 (high resolution) (MIROC4h)
MIROC, version 5 (MIROC5)

Max Planck Institute for Meteorology (Germany) Max Planck Institute (MPI) Earth System Model, low
resolution (MPI-ESM-LR)

MPI Earth SystemModel, medium resolution (MPI-ESM-MR)
MPI Earth System Model, paleo (MPI-ESM-P)

Meteorological Research Institute (Japan) Meteorological Research Institute (MRI) Coupled
Atmosphere–Ocean General Circulation Model, version 3
(MRI-CGCM3)

MRI Earth System Model, version 1 (MRI-ESM1)
Norwegian Climate Centre (Norway) Norwegian Earth System Model, version 1 (intermediate

resolution) (NorESM1-M)
NorESM1 with prognostic biogeochemical cycling

(NorESM1-ME)
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Where:	  

c	  =	  Total	  Cloud	  Amount
Ts=	  Surface	  Temperature
k	  =	  Cloud	  Amount	  Radiative	  Kernel
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Estimate	  of	  
Cloud	  Amount	  Feedback
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this term [i.e., Dc(Rcld 2Rclr)] is divided by change in
SST (DTs) it represents cloud feedback.We note that we
cannot evaluate cloud feedback due to changes in cloud
vertical and optical properties because long-term ship-
based observations only provide information about cloud
amount. Therefore,Dc in our study corresponds to changes

in cloud amount and we can only estimate the cloud
amount component of cloud feedback.
SinceCRE is defined asCRE5Rtot 2Rclr, we canwrite

Rcld 2Rclr using (1) as

k5
CRE

c
, (4)

where k represents the sensitivity of Rtot to changes in
cloud amount, and is calculated as mean cloud radiative
effect (CRE5Rtot 2Rclr) at TOA fromCERES divided
by mean cloud amount (c) from EECRA. We will refer
to k as ‘‘cloud amount radiative kernel’’ in the reminder
of this text in analogy to cloud radiative kernels devel-
oped by Zelinka et al. (2012a). In previous studies, k has
been evaluated using a radiative transfer model that
calculates cloud radiative kernels directly (Zelinka et al.
2012a; Zhou et al. 2013) or as a residual from radiative
kernels of all the other noncloud feedback variables
(Soden et al. 2008). Other methods have also been de-
veloped [e.g., the ‘‘approximate partial radiative pertur-
bation method’’ of Taylor et al. (2007)]. Soden et al.
(2008) provide a good overview of these different tech-
niques. In addition to changes in cloud amount, these
methods generally take into account the sensitivity to
perturbations in cloud vertical and optical properties.
Cloud amount feedback (units of Wm22K21) can

then be finally written as

CAF5
kDc
DTs

. (5)

The sign convention is that positive values indicate posi-
tive cloud amount feedback, whichmeans an amplification

TABLE 1. (Continued)

Institution Model name

Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology
(Japan)

Model for Interdisciplinary Research on Climate (MIROC),
Earth System Model (MIROC-ESM)

MIROC, Earth System Model, Chemistry Coupled
(MIROC-ESM-CHEM)

MIROC, version 4 (high resolution) (MIROC4h)
MIROC, version 5 (MIROC5)

Max Planck Institute for Meteorology (Germany) Max Planck Institute (MPI) Earth System Model, low
resolution (MPI-ESM-LR)

MPI Earth SystemModel, medium resolution (MPI-ESM-MR)
MPI Earth System Model, paleo (MPI-ESM-P)

Meteorological Research Institute (Japan) Meteorological Research Institute (MRI) Coupled
Atmosphere–Ocean General Circulation Model, version 3
(MRI-CGCM3)

MRI Earth System Model, version 1 (MRI-ESM1)
Norwegian Climate Centre (Norway) Norwegian Earth System Model, version 1 (intermediate

resolution) (NorESM1-M)
NorESM1 with prognostic biogeochemical cycling

(NorESM1-ME)
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Where:	  

c	  =	  Total	  Cloud	  Amount
Ts=	  Surface	  Temperature
k	  =	  Cloud	  Amount	  Radiative	  Kernel

The first term on theRHS of (2) represents the change in
clear-sky flux. The second term represents the contri-
bution from changes in cloud cover (Dc) with all the
other properties affecting radiation held fixed, while the
third term represents the effect of changes in radiation
fluxes weighted by the mean cloud cover. The last term
(«) accounts for the covariance among the fields.
In previous studies observational estimates of cloud

feedback have often been computed as the change in
cloud radiative effect (CRE) at TOA divided by change
in global mean SST (DTs). The change in CRE at TOA
can be written rearranging Eq. (2) as

DCRE5DRtot 2DRclr 5Dc(Rcld 2Rclr)

1 c(DRcld2DRclr) , (3)

where the covariance term is much smaller than the
other terms and can be omitted (cf. Taylor et al. 2007).
This method has been criticized because the second
term on the RHS of (3) may include changes in clear-sky
fluxes due to noncloud feedbacks (see discussion in Soden
et al. 2008). These changes can cause a change in CRE that
is not caused by a change in cloud cover.
In this study, we use only the first term on the RHS

of (3) to define cloud feedback, so our definition is not
contaminated by changes in clear-sky radiation. When
this term [i.e., Dc(Rcld 2Rclr)] is divided by change in
SST (DTs) it represents cloud feedback.We note that we
cannot evaluate cloud feedback due to changes in cloud
vertical and optical properties because long-term ship-
based observations only provide information about cloud
amount. Therefore,Dc in our study corresponds to changes

in cloud amount and we can only estimate the cloud
amount component of cloud feedback.
SinceCRE is defined asCRE5Rtot 2Rclr, we canwrite

Rcld 2Rclr using (1) as

k5
CRE

c
, (4)

where k represents the sensitivity of Rtot to changes in
cloud amount, and is calculated as mean cloud radiative
effect (CRE5Rtot 2Rclr) at TOA fromCERES divided
by mean cloud amount (c) from EECRA. We will refer
to k as ‘‘cloud amount radiative kernel’’ in the reminder
of this text in analogy to cloud radiative kernels devel-
oped by Zelinka et al. (2012a). In previous studies, k has
been evaluated using a radiative transfer model that
calculates cloud radiative kernels directly (Zelinka et al.
2012a; Zhou et al. 2013) or as a residual from radiative
kernels of all the other noncloud feedback variables
(Soden et al. 2008). Other methods have also been de-
veloped [e.g., the ‘‘approximate partial radiative pertur-
bation method’’ of Taylor et al. (2007)]. Soden et al.
(2008) provide a good overview of these different tech-
niques. In addition to changes in cloud amount, these
methods generally take into account the sensitivity to
perturbations in cloud vertical and optical properties.
Cloud amount feedback (units of Wm22K21) can

then be finally written as

CAF5
kDc
DTs

. (5)

The sign convention is that positive values indicate posi-
tive cloud amount feedback, whichmeans an amplification

TABLE 1. (Continued)

Institution Model name

Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology
(Japan)

Model for Interdisciplinary Research on Climate (MIROC),
Earth System Model (MIROC-ESM)

MIROC, Earth System Model, Chemistry Coupled
(MIROC-ESM-CHEM)

MIROC, version 4 (high resolution) (MIROC4h)
MIROC, version 5 (MIROC5)

Max Planck Institute for Meteorology (Germany) Max Planck Institute (MPI) Earth System Model, low
resolution (MPI-ESM-LR)

MPI Earth SystemModel, medium resolution (MPI-ESM-MR)
MPI Earth System Model, paleo (MPI-ESM-P)

Meteorological Research Institute (Japan) Meteorological Research Institute (MRI) Coupled
Atmosphere–Ocean General Circulation Model, version 3
(MRI-CGCM3)

MRI Earth System Model, version 1 (MRI-ESM1)
Norwegian Climate Centre (Norway) Norwegian Earth System Model, version 1 (intermediate

resolution) (NorESM1-M)
NorESM1 with prognostic biogeochemical cycling

(NorESM1-ME)
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• Only	  the	  cloud	  amount	  part	  
of	  the	  total	  cloud	  feedback

• Does	  not	  include	  the	  effect	  
of	  changes	  in	  vertical	  and	  
optical	  properties	  of	  the	  
clouds



Cloud	  Amount	  Radiative	  Kernel

of cloud change with observations over this region and
similar large-scale patterns in all the Indo-Pacific Ocean
(Fig. 1), which suggests that there could be robust physical
mechanisms inmodels to explain the observed cloud cover
changes.
We quantify the radiative impact associated with these

long-term cloud trends by computing cloud amount feed-
back, and then compare observational estimates of cloud
amount feedback with those derived in climate models.
While satellite products may seem a more reliable dataset
to estimate cloud feedbacks, their short-term coverage
(less than 30yr) limits their applicability for climate change
studies. In fact, trends in atmospheric variables on time
scales of 30 yr or shorter tend to reflect internal climate
variability, in particular over regions characterized by high
variability on decadal time scales, such as theNorth Pacific
(Deser et al. 2012) and North Atlantic (Ting et al. 2009).
For example, cloud signals in the northeast Pacific exhibit
significant decadal fluctuations, which are linked to shifts
in the Pacific decadal oscillation (PDO) that occurred in
the 1976–77 and late 1990s. The time series in Fig. 2c
show that all datasets exhibit reduced cloud cover from
the mid-1970s to the late 1990s when SST in the eastern
Pacific was warmer due to the positive phase of the PDO,
and then increased cloud cover from the late 1990s when
SST was colder due to the negative phase of the PDO.
Therefore, the slightly positive trend in cloud cover from
1984 to 2007 in the northeast Pacific reflects decadal
variability and is not representative of the long-term trend
in EECRA (blue dashed line in Fig. 2c). This suggests

that satellite cloud products are not suitable for climate
change studies in regions where decadal variability is
important. For this reason, we choose to estimate long-
term cloud amount feedback from ship-based observa-
tions, which cover more than five decades and are less
sensitive to decadal fluctuations.

b. Cloud amount feedback

To obtain the cloud amount feedback, we multiply
cloud amount radiative kernel by cloud cover change
and then divide by tropical mean change in SST, as de-
fined in Eq. (5). We first obtain the observational esti-
mate of cloud amount radiative kernel (Fig. 3a), which
is computed as the mean cloud radiative effect from
CERES divided by themean cloud cover fromEECRA,
after regridding CERES to the gridbox size of EECRA.
The model estimates of cloud amount radiative ker-
nel are computed as in observations for each of the
42 models. Themultimodel mean (Fig. 3b) is then obtained
by averaging all model estimates. Figure 3a (observa-
tions) and Fig. 3b (models) show good agreement in
sign. Negative values indicate where clouds have a net
(i.e., shortwave plus longwave) cooling effect, while
positive values indicate where clouds have a net warm-
ing effect. Cloud amount radiative kernels are negative
almost everywhere in both observations and models,
which means that clouds have a net cooling effect. Models
display even larger values than observations, suggesting
that the radiation budget in the models is more sensitive
to changes in cloud cover. This is consistent with the fact

FIG. 3. Cloud amount radiative kernel computed as mean cloud radiative effect (CRE) di-
vided by mean cloud cover. (a) Observational estimate (CRE is from CERES and mean cloud
cover is from EECRA) and (b) CMIP5 multimodel mean.
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CMIP5	  historical	  
multi-‐model	  mean
(42	  models	  run	  with	  
prescribed	  time	  varying	  
historical	  forcings)

EECRA	  (ship)	  
observations

The first term on theRHS of (2) represents the change in
clear-sky flux. The second term represents the contri-
bution from changes in cloud cover (Dc) with all the
other properties affecting radiation held fixed, while the
third term represents the effect of changes in radiation
fluxes weighted by the mean cloud cover. The last term
(«) accounts for the covariance among the fields.
In previous studies observational estimates of cloud

feedback have often been computed as the change in
cloud radiative effect (CRE) at TOA divided by change
in global mean SST (DTs). The change in CRE at TOA
can be written rearranging Eq. (2) as

DCRE5DRtot 2DRclr 5Dc(Rcld 2Rclr)

1 c(DRcld2DRclr) , (3)

where the covariance term is much smaller than the
other terms and can be omitted (cf. Taylor et al. 2007).
This method has been criticized because the second
term on the RHS of (3) may include changes in clear-sky
fluxes due to noncloud feedbacks (see discussion in Soden
et al. 2008). These changes can cause a change in CRE that
is not caused by a change in cloud cover.
In this study, we use only the first term on the RHS

of (3) to define cloud feedback, so our definition is not
contaminated by changes in clear-sky radiation. When
this term [i.e., Dc(Rcld 2Rclr)] is divided by change in
SST (DTs) it represents cloud feedback.We note that we
cannot evaluate cloud feedback due to changes in cloud
vertical and optical properties because long-term ship-
based observations only provide information about cloud
amount. Therefore,Dc in our study corresponds to changes

in cloud amount and we can only estimate the cloud
amount component of cloud feedback.
SinceCRE is defined asCRE5Rtot 2Rclr, we canwrite

Rcld 2Rclr using (1) as

k5
CRE

c
, (4)

where k represents the sensitivity of Rtot to changes in
cloud amount, and is calculated as mean cloud radiative
effect (CRE5Rtot 2Rclr) at TOA fromCERES divided
by mean cloud amount (c) from EECRA. We will refer
to k as ‘‘cloud amount radiative kernel’’ in the reminder
of this text in analogy to cloud radiative kernels devel-
oped by Zelinka et al. (2012a). In previous studies, k has
been evaluated using a radiative transfer model that
calculates cloud radiative kernels directly (Zelinka et al.
2012a; Zhou et al. 2013) or as a residual from radiative
kernels of all the other noncloud feedback variables
(Soden et al. 2008). Other methods have also been de-
veloped [e.g., the ‘‘approximate partial radiative pertur-
bation method’’ of Taylor et al. (2007)]. Soden et al.
(2008) provide a good overview of these different tech-
niques. In addition to changes in cloud amount, these
methods generally take into account the sensitivity to
perturbations in cloud vertical and optical properties.
Cloud amount feedback (units of Wm22K21) can

then be finally written as

CAF5
kDc
DTs

. (5)

The sign convention is that positive values indicate posi-
tive cloud amount feedback, whichmeans an amplification

TABLE 1. (Continued)

Institution Model name

Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology
(Japan)

Model for Interdisciplinary Research on Climate (MIROC),
Earth System Model (MIROC-ESM)

MIROC, Earth System Model, Chemistry Coupled
(MIROC-ESM-CHEM)

MIROC, version 4 (high resolution) (MIROC4h)
MIROC, version 5 (MIROC5)

Max Planck Institute for Meteorology (Germany) Max Planck Institute (MPI) Earth System Model, low
resolution (MPI-ESM-LR)

MPI Earth SystemModel, medium resolution (MPI-ESM-MR)
MPI Earth System Model, paleo (MPI-ESM-P)

Meteorological Research Institute (Japan) Meteorological Research Institute (MRI) Coupled
Atmosphere–Ocean General Circulation Model, version 3
(MRI-CGCM3)

MRI Earth System Model, version 1 (MRI-ESM1)
Norwegian Climate Centre (Norway) Norwegian Earth System Model, version 1 (intermediate

resolution) (NorESM1-M)
NorESM1 with prognostic biogeochemical cycling

(NorESM1-ME)
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Cloud	  Radiative	  Effect	  =	  
net	  SW+LW	  all-‐clear	  sky	  
at	  TOA

Negative	  =	  cooling
Positive	  =	  warming



that models simulate too few and too bright clouds
(Nam et al. 2012), so that the numerator of the cloud
amount radiative kernel (i.e., CRE) is too large (nega-
tive) while the denominator (i.e., cloud amount) is too
small, making the cloud amount radiative kernel larger
and more negative in models than in observations. The
largest discrepancies between the multimodel mean and
observational estimates occur over the central and west-
ern tropical Pacific and southern Indian Ocean, where
clouds in observations have a smaller cooling effect than
in models (Fig. 3).
We note that the observational estimate shown in

Fig. 3a is sensitive to cloud climatology. For instance, if
we use ISCCP or PATMOS-X instead of EECRA, the
cloud amount radiative kernel looks slightly different,
although we still get less negative values than the multi-
modelmean, especially in thewestern Pacific. These slight
differences do not influence our conclusions because we
use cloud amount radiative kernel not to evaluate model
performance, but rather to weigh the radiative impact of
cloud cover changes in relation to the mean cloud cover.
For example, if in a particular location of the world cloud
cover is larger in ISCCP (e.g., 80%) than in EECRA (e.g.,
60%) for the same value of CRE, then a 5% change in
cloud cover will have relatively larger impact on cloud
amount feedback computed from EECRA than from
ISCCP, because the fraction of cloud change to mean
cloud cover is larger in EECRA (5%/60%) than ISCCP
(5%/80%). The same applies to intermodel differences,
although models simulate different cloud climatology due

to different model parameterizations rather than different
retrieval methods.
After obtaining the cloud amount radiative kernel, we

compute model and observational estimates of cloud
amount feedback, which are shown in Fig. 4. Figure 4 is
calculated multiplying long-term trends in cloud cover
by cloud amount radiative kernel, and then dividing by
tropical mean SST change. Model estimates of cloud
amount feedback are computed for each model, and
then the multimodel mean is obtained by averaging all
model estimates. Contours in Fig. 4 represent total cloud
cover climatology, while stippling indicates where the
changes are statistically significant. Observational cloud
amount feedback is statistically significant where cloud
trends shown in Fig. 1a are, that is, over the northeast
Pacific and western Pacific where cloud amount feed-
back is positive, and central Pacific and western Indian
where cloud amount feedback is negative. Model cloud
amount feedback is only significant over the southeast
Pacific where there is intermodel agreement in cloud
trends. The multimodel mean cloud amount feedback
(Fig. 4b) is less than half the observational values (Fig. 4a);
nevertheless, the sign of the feedback is consistent with
observations over most of the Indian and Pacific Oceans.
Cloud amount feedback [Eq. (5)] can be split into

contributions from 1/DTs,DC, and k. To roughly estimate
which of these terms contributes the most to weaker
model cloud amount feedback, we compute the frac-
tional change in cloud amount feedback (CAF) in the
four boxed regions of Fig. 4. The fractional change

FIG. 4. Cloud amount feedback. (a) Observational estimate computed multiplying cloud
amount radiative kernel (Fig. 3a) by EECRA cloud amount changes (Fig. 1a) and then di-
viding by tropical mean change in SST fromHadISST (0.468C). Contours represent total cloud
amount climatology fromEECRA. Stippling indicates where cloud amount feedback is robust
and is computed as in Fig. 1. (b) CMIP5multimodel mean. Contours represent the multimodel
mean cloud amount climatology. Stippling indicates where at least 31 models out 42 (;74%)
agree on sign. Boxes indicate the regions where cloud changes in Fig. 1a are statistically
significant.
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CMIP5	  historical	  
multi-‐model	  mean
(42	  models	  run	  with	  
prescribed	  time	  varying	  
historical	  forcings)

EECRA	  (ship)	  
observations

Observational	  and	  Model	  Estimates	  of	  
Cloud	  Amount	  Feedback



definitions of total cloud fraction in models and obser-
vations (Marchand et al. 2010) seems to be much smaller
than the uncertainty that arises from the large intermodel
spread in the simulation of cloud cover changes and cloud
amount feedback (Figs. 5 and 6).

5. Discussion

The pattern of observed cloud cover changes over the
tropical Pacific Ocean (Fig. 1) for the years 1954–2005 is
similar to century time scale cloud cover changes (1900 to
the present) computed from ICOADS (Deser et al.
2010). Those authors argued that the pattern in Fig. 1a is
reminiscent of El Ni~no because there is decrease in cloud
cover over the western Pacific and increase over the
central Pacific. They found that this El Ni~no–like cloud
change pattern in the western Pacific was consistent with
an observed eastward shift in precipitation in the tropical
Pacific and weakening of the Walker circulation over the

last century (Vecchi et al. 2006). Furthermore, Tokinaga
et al. (2012) ranAGCMexperiments with prescribed SST
patterns from observations and showed that the models
were able to reproduce cloud cover changes consistent
with Fig. 1a, along with an eastward shift in convection
and weakening of theWalker circulation. Thus, the east–
west dipole pattern of cloud change and feedback in the
central andwestern Pacific may be explained byElNi~no–
like mechanisms occurring on long time scales.
On the other hand, cloud increase in the southeast Pa-

cific subtropical stratocumulus and trade-cumulus regions
shown by both Fig. 1b of this study and Deser et al. (2010)
does not resemble cloud changes during El Ni~no events,
because during El Ni~no events cloud cover decreases over
both the southeast and northeast Pacific stratocumulus
regions (Deser et al. 2004). This suggests that, in contrast
to the western and central Pacific, mechanisms of climate
change in the eastern Pacific might not be explained by
El Ni~no–like mechanisms (cf. DiNezio et al. 2009).

FIG. 5. Cloud amount feedback averaged over the first two boxed regions of Fig. 4:
(a) western Indian and (b) western Pacific. The numbers indicate the model name (see legend
in Table 4). Horizontal lines represent the estimated range of observational errors, which are
computed using the propagation of uncertainty formula assuming that the error in the estimate
of cloud amount change is much larger than the errors in the estimates of tropical mean SST
change and cloud amount radiative kernel. The observational error on cloud amount feedback
(CAF) can therefore be written as sCAF/CAF5sDc/DC. From Eq. (4), CAF5kDc/DTs;
therefore, sCAF 5sDc(k/DTs), where k is averaged over the boxed region and DTs is the
tropical mean SST change (0.468C); also, sDc represents the 90% confidence range and is
computed as the standard error on the estimate of the cloud amount trend multiplied by the
t value at the 90% probability level of a two-tailed Student’s t test with degrees of freedom
equal to the number of observations adjusted to account for the autocorrelation at lag 1.
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in CAF can be written as dCAF=CAF5 (dk=k)1
(dDC=DC)2 (dDTs=DTs), where d represents the differ-
ences between observed andmultimodel mean values.We
do not expect the LHS of this equation to be equal to the
difference between the computed multimodel mean and
observations because this equation is a valid approximation
only for small perturbations. Nonetheless, this approxima-
tion indicates which terms contribute the most to the dif-
ferences between models and observations. The fractional
changes of the RHS terms of the equation are reported in
Table 3,which shows that the largest contribution toweaker
model cloud amount feedback comes from smaller model-
simulated cloud cover changes than observed.
Figures 5 and 6 show the estimates of cloud amount

feedback in the four boxed regions of Fig. 4 in each
model (numbered bars), multimodel mean (denotedM),
and observations (OBS). Numbered bars correspond to
individual model estimates according to the legend in
Table 4. Figure 5 shows the estimates in the (a) western
Indian and (b) western Pacific, while Fig. 6 shows the
(a) northeast Pacific and (b) central Pacific. Also plotted
in Figs. 5 and 6 are estimates of observational errors
(horizontal lines), which represent the error on the es-
timates of cloud trends (see the caption of Fig. 5). While

generally the multimodel mean is significantly smaller
than observations, models individually can simulate
cloud amount feedback of the same strength if not larger
than observations. In the western Indian (Fig. 5a),
30 models out of 42 (;71%) agree in sign with observa-
tions. Of these, 10 fall within the error range of obser-
vations, and 2 exceed the upper extent of the error range.
In the western Pacific (Fig. 5b), 24 models (;57%) agree
in sign with observations, 8 fall within the error range, and
1 exceeds the upper extent of the error range. In the
northeast Pacific (Fig. 6a), 21 models (50%) agree in sign
with observations, and only 1 falls within the error range.
In the central Pacific (Fig. 6b), 25 models (;59%) agree
with observations, 3 fall within the error range, and 1 ex-
ceeds the upper extent of the error range. The region of
largest uncertainty is therefore the northeast Pacific, which
is a region predominantly covered by low-level marine
stratocumulus clouds. It is also noteworthy that the ob-
servational estimate in the northeast Pacific is larger than
that simulated by any models, whereas this is not the case
for the other regions, where some of the model estimates
can exceed the observed changes.
We computed similar bar charts for changes in cloud

cover in these four regions. No model simulated cloud
cover changes larger than the observed in any of the
regions (not shown). Therefore, somemodels are able to
simulate similar magnitude cloud amount feedback as
observations (Fig. 5 and 6), not because they reproduce
the same cloud amount changes but because they over-
estimate the radiative effect of clouds (Fig. 3). We do not
find any particular model that performs better than the
others in the simulation of cloud cover changes or cloud
amount feedback in all four regions.
We mentioned that total cloud fraction computed in

the models is not the same as observed total cloud frac-
tion, which introduces uncertainty in the estimates of
cloud amount feedback. However, the uncertainty in the
estimation of cloud amount feedback due to the different

TABLE 3. Observed minus multimodel mean fractional changes
of (left) cloud amount radiative kernel k, (middle) cloud cover
change DC, and (right) tropical mean SST change DTs, in the four
boxed regions of Fig. 4. The denominators are mean cloud amount
radiative kernel, cloud cover change, and tropical mean SST change
from observations. The numbers shown are the absolute values.

Differences between
observations and the
multimodel mean dk/k dDC/DC dDTs/DTs

Western Indian 0.70 0.89 0.24
Western Pacific 0.41 1.00 00

Northeast Pacific 0.16 0.96 00

Central Pacific 0.72 0.91 00

TABLE 4. Legend of model numbers for Figs. 5 and 6.

1. ACCESS1–0 15. GFDL-CM3 29. MIROC-ESM-CHEM
2. ACCESS1–3 16. GFDL-ESM2G 30. MIROC-ESM
3. BNU-ESM 17. GFDL-ESM2M 31. MIROC4h
4. CCSM4 18. GISS-E2-H-CC 32. MIROC5
5. CESM1-BGC 19. GISS-E2-H 33. MPI-ESM-LR
6. CESM1-CAM5 20. GISS-E2-R-CC 34. MPI-ESM-MR
7. CESM1-FASTCHEM 21. GISS-E2-R 35. MPI-ESM-P
8. CESM1-WACCM 22. HadCM3 36. MRI-CGCM3
9. CNRM-CM5–2 23. HadGEM2-AO 37. MRI-ESM1
10. CNRM-CM5 24. HadGEM2-CC 38. NorESM1-ME
11. CSIRO-Mk3–6-0 25. HadGEM2-ES 39. NorESM1-M
12. CanESM2 26. IPSL-CM5A-LR 40. BCC-CSM1-1-M
13. FGOALS-g2 27. IPSL-CM5A-MR 41. BCC-CSM1-1
14. FIO-ESM 28. IPSL-CM5B-LR 42. INM-CM4
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The decrease in cloud amount and the resulting pos-
itive cloud amount feedback over the northeast Pa-
cific stratocumulus region is instead consistent with
a stratocumulus-to-cumulus (Sc-to-Cu) transition hy-
pothesis (Bretherton and Wyant 1997). Eastman et al.
(2011) used the same dataset (EECRA) as in the present
study to look at changes in low-level cloud types over the
years 1954–2008. They found an increase in the frequency
of occurrence in cumulus and a decrease in stratocumulus
in the northeast Pacific and other subtropical stratocumu-
lus regions, which suggests a long-term Sc-to-Cu transition.
Cumulus cloud cover ismore scattered than stratocumulus,
so therefore cloud fraction decreases during the transi-
tion resulting in positive cloud amount feedback.
The only region where there is intermodel agreement

in cloud amount changes is the southeast Pacific, where
cloud amount increases in the historical simulations. The
subtropical southeast Pacific is a region where models
robustly simulate aminimum in SSTwarming in response
to climate change (Xie et al. 2010; DiNezio et al. 2011).
This minimum warming has usually been explained as
arising from a strengthening of the trade winds (Falvey
and Garreaud 2009). Our results suggest that negative
cloud amount feedback in the southeast Pacific could
contribute as well to enhance this minimum warming.
The observed and simulated changes in cloud amount

feedback are consistent with some of the mechanisms

explaining climate change cloud feedbacks in doubled-
CO2 (Zelinka et al. 2012b) and abrupt CO2 quadrupling
GCM experiments (Zelinka et al. 2013). Zelinka et al.
(2012b) split cloud feedback into contributions from
cloud amount, cloud altitude, and cloud optical depth
feedbacks. As in our study, they found a negative cloud
amount feedback over the central Pacific due to an in-
crease in cloud amount. This negative cloud amount
feedback, however, was largely compensated by a posi-
tive cloud altitude feedback, resulting in net positive
cloud feedback over the central Pacific. Their results were
consistent with the hypothesis of fixed-anvil-temperature
ofHartmann and Larson (2002), according towhich high-
level clouds in the tropics tend to rise as the climate
warms to conserve their cloud-top temperature. Our
findings support the cloud amount feedback part of this
mechanism. Over the northeast Pacific, Zelinka et al.
(2012b) found positive cloud amount feedback as in our
study. They also found positive cloud altitude feedback,
which along with positive cloud amount feedback is
consistent with the Sc-to-Cu transition hypothesis and
deepening of the marine boundary layer in response to
warmer SST.
The complexity of the mechanisms involved in cloud

changes, which is reflected by the observed north–south
and east–west asymmetries, suggests that regional dif-
ferences in mechanisms of cloud change need to be

FIG. 6. As in Fig. 5, but for cloud amount feedback averaged over the other two boxes regions of
Fig. 4: (a) northeast Pacific and (b) central Pacific.
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in CAF can be written as dCAF=CAF5 (dk=k)1
(dDC=DC)2 (dDTs=DTs), where d represents the differ-
ences between observed andmultimodel mean values.We
do not expect the LHS of this equation to be equal to the
difference between the computed multimodel mean and
observations because this equation is a valid approximation
only for small perturbations. Nonetheless, this approxima-
tion indicates which terms contribute the most to the dif-
ferences between models and observations. The fractional
changes of the RHS terms of the equation are reported in
Table 3,which shows that the largest contribution toweaker
model cloud amount feedback comes from smaller model-
simulated cloud cover changes than observed.
Figures 5 and 6 show the estimates of cloud amount

feedback in the four boxed regions of Fig. 4 in each
model (numbered bars), multimodel mean (denotedM),
and observations (OBS). Numbered bars correspond to
individual model estimates according to the legend in
Table 4. Figure 5 shows the estimates in the (a) western
Indian and (b) western Pacific, while Fig. 6 shows the
(a) northeast Pacific and (b) central Pacific. Also plotted
in Figs. 5 and 6 are estimates of observational errors
(horizontal lines), which represent the error on the es-
timates of cloud trends (see the caption of Fig. 5). While

generally the multimodel mean is significantly smaller
than observations, models individually can simulate
cloud amount feedback of the same strength if not larger
than observations. In the western Indian (Fig. 5a),
30 models out of 42 (;71%) agree in sign with observa-
tions. Of these, 10 fall within the error range of obser-
vations, and 2 exceed the upper extent of the error range.
In the western Pacific (Fig. 5b), 24 models (;57%) agree
in sign with observations, 8 fall within the error range, and
1 exceeds the upper extent of the error range. In the
northeast Pacific (Fig. 6a), 21 models (50%) agree in sign
with observations, and only 1 falls within the error range.
In the central Pacific (Fig. 6b), 25 models (;59%) agree
with observations, 3 fall within the error range, and 1 ex-
ceeds the upper extent of the error range. The region of
largest uncertainty is therefore the northeast Pacific, which
is a region predominantly covered by low-level marine
stratocumulus clouds. It is also noteworthy that the ob-
servational estimate in the northeast Pacific is larger than
that simulated by any models, whereas this is not the case
for the other regions, where some of the model estimates
can exceed the observed changes.
We computed similar bar charts for changes in cloud

cover in these four regions. No model simulated cloud
cover changes larger than the observed in any of the
regions (not shown). Therefore, somemodels are able to
simulate similar magnitude cloud amount feedback as
observations (Fig. 5 and 6), not because they reproduce
the same cloud amount changes but because they over-
estimate the radiative effect of clouds (Fig. 3). We do not
find any particular model that performs better than the
others in the simulation of cloud cover changes or cloud
amount feedback in all four regions.
We mentioned that total cloud fraction computed in

the models is not the same as observed total cloud frac-
tion, which introduces uncertainty in the estimates of
cloud amount feedback. However, the uncertainty in the
estimation of cloud amount feedback due to the different

TABLE 3. Observed minus multimodel mean fractional changes
of (left) cloud amount radiative kernel k, (middle) cloud cover
change DC, and (right) tropical mean SST change DTs, in the four
boxed regions of Fig. 4. The denominators are mean cloud amount
radiative kernel, cloud cover change, and tropical mean SST change
from observations. The numbers shown are the absolute values.

Differences between
observations and the
multimodel mean dk/k dDC/DC dDTs/DTs

Western Indian 0.70 0.89 0.24
Western Pacific 0.41 1.00 00

Northeast Pacific 0.16 0.96 00

Central Pacific 0.72 0.91 00

TABLE 4. Legend of model numbers for Figs. 5 and 6.

1. ACCESS1–0 15. GFDL-CM3 29. MIROC-ESM-CHEM
2. ACCESS1–3 16. GFDL-ESM2G 30. MIROC-ESM
3. BNU-ESM 17. GFDL-ESM2M 31. MIROC4h
4. CCSM4 18. GISS-E2-H-CC 32. MIROC5
5. CESM1-BGC 19. GISS-E2-H 33. MPI-ESM-LR
6. CESM1-CAM5 20. GISS-E2-R-CC 34. MPI-ESM-MR
7. CESM1-FASTCHEM 21. GISS-E2-R 35. MPI-ESM-P
8. CESM1-WACCM 22. HadCM3 36. MRI-CGCM3
9. CNRM-CM5–2 23. HadGEM2-AO 37. MRI-ESM1
10. CNRM-CM5 24. HadGEM2-CC 38. NorESM1-ME
11. CSIRO-Mk3–6-0 25. HadGEM2-ES 39. NorESM1-M
12. CanESM2 26. IPSL-CM5A-LR 40. BCC-CSM1-1-M
13. FGOALS-g2 27. IPSL-CM5A-MR 41. BCC-CSM1-1
14. FIO-ESM 28. IPSL-CM5B-LR 42. INM-CM4
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Summary
Ø The	  biggest	  uncertainty	  in	  estimates	  of	  climate	  sensitivity	  is	  due	  to	  the	  sign	  

and	  magnitude	  of	  cloud	  feedback,	  especially	  in	  regions	  of	  low-‐level	  clouds

Ø Constraining	  the	  sign	  and	  magnitude	  of	  cloud	  feedback	  is	  difficult	  because	  
observations	  are	  limited	  and	  affected	  by	  biases

Ø Here	  we	  examined	  ship-‐based	  observations,	  which	  are	  longer,	  covering	  about	  
55	  years

Ø Observed	  trends	  in	  cloud	  cover	  are	  significant	  over	  4	  regions:	  NE	  Pacific,	  
Central	  Pacific,	  Western	  Pacific,	  Western	  Indian

Ø We	  estimated	  cloud	  amount	  feedback	  from	  observations	  and	  compared	  with	  
historical	  simulations.	  Some	  models	  get	  the	  sign	  and	  magnitude	  right,	  but	  
there	  is	  not	  any	  one	  model	  that	  gets	  it	  right	  over	  all	  4	  regions
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